Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate

نویسندگان

  • S. Keyvaninia
  • S. Stanković
  • P. J. Van Veldhoven
  • D. Van Thourhout
  • G. Roelkens
چکیده

Heterogeneous integration of III-V semiconductor materials on a silicon-on-insulator (SOI) platform has recently emerged as one of the most promising methods for the fabrication of active photonic devices in silicon photonics. For this integration, it is essential to have a reliable and robust bonding pr ocedure, which a lso pr ovides a u niform a nd u ltra-thin bon ding layer for an effective optical coupling between III-V active layers and SOI waveguides. A new process for bonding of III-V dies to processed siliconon-insulator waveguide circuits using divinylsiloxane-bis-benzocyclobutene (DVS-BCB) was developed u sing a commercial wafer b onder. This “cold bonding” method s ignificantly s implifies t he bon ding preparation f or machine-based bonding both for die and wafer-scale bonding. High-quality bonding, with ultra-thin bonding layers (<50 nm) is demonstrated, which is suitable for the fabrication of heterogeneously integrated photonic devices, specifically hybrid III-V/Si lasers. References and links 1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). 2. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004). 3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010). 4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). 5. T. Mitze, M. Schnarrenberger, L. Zimmermann, J. Bruns, F. Fidorra, J. Kreissl, K. Janiak, S. Fidorra, H. Heidrich, and K. Petermann, “Hybrid integration of III/V lasers on a silicon-on-insulator (SOI) optical board,” in 2nd IEEE International Conference on Group IV Photonics, 2005 (IEEE, 2005), pp. 210–212. 6. D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H.-H. Wehmann, “Monolithic InGaAsP optoelectronic devices with silicon electronics,” IEEE J. Sel. Top. Quantum Electron. 37(10), 1246–1252 (2001). 7. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012). 8. S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett. 14(8), H326–H329 (2011). 9. S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett. 34(18), 2802–2804 (2009). 10. S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photon. Technol. Lett. 24(20), 1849–1851 (2012). 11. F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2004). 12. H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass,” J. Vac. Sci. Technol. B 20(2), 752–754 (2002). 13. F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng. 11(2), 100–107 (2001). 14. D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon, and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng. 19(7), 075013 (2009). 15. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006). 16. S. Keyvaninia, M. Muneeb, S. Stankovic, G. Roelkens, D. Van Thourhout, and J.-M. Fedeli, “Multiple die-towafer adhesive bonding for heterogeneous integration,” in 16th European Conference on Integrated Optics (2012), paper 186. 17. S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310nm Hybrid III-V/Si FabryPerot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 23(23), 1781–1783 (2011). 18. S. Keyvaninia, G. Roelkens, and D. Van Thourhout, “Engineering the heterogeneously integrated III-V/SOI tunable laser,” in Proceedings of 2009Annual Symposium of the IEEE Photonics Benelux Chapte r(ASP— Academic & Scientific, 2009), pp. 141–144. 19. S. Keyvaninia, S. Verstuyft, F. Lelarge, G. H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, J. Bolk, M. Smit, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/Si multi-wavelength laser based on a ring resonator array multiplexer,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper PAF4A.3. 20. D. Van Thourhout, S. Keyvaninia, G. Roelkens, M. Lamponi, F. Lelarge, J. M. Fedeli, S. Messaoudene, and G. H. Duan, “Optimization of taper structures for III-V silicon lasers,” in 2012 International Conference on Solid State Devices and Materials (2012), pp. 524–525. 21. P. De Heyn, S. Verstuyft, S. Keyvaninia, A. Trita, and D. Van Thourhout, “Tunable 4-channel ultra-dense WDM demultiplexer with III-V photodiodes integrated on silicon-on-insulator,” in Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper ATh2B.1. 22. “Processing procedures for CYCLOTENE 3000 series dry etch resins,” http://www.dow.com/cyclotene/prod/302235.htm. 23. J. Pello, P. Saboya, S. Keyvaninia, J. J. G. M. van der Tol, G. Roelkens, H. P. M. M. Ambrosius, and M. K. Smit, “Post-bonding fabrication of photonic devices in an Indium phosphide membrane bonded on glass,” in Proceedings of the 16th Annual symposium of the IEEE Photonics Benelux Chapter (2011), pp. 213–216. 24. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “Highefficiency ultrasmall polarization converter in InP membrane,” Opt. Lett. 37(17), 3711–3713 (2012).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal bonding with ultra-thin layer for optical applications

Adhesive bonding is a well-known technics to assembly dies or wafer on a host substrate through polymer or solder bumps. To combine electronic and photonic systems on a single chip, we propose hereby to use AuSn alloy as bonding medium combined to waferscale technology and post-bonding III-V processing alleviating so the need of alignment accuracy between wafers. For instance, high density LED’...

متن کامل

High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

*Correspondence: Patrick Guo-Qiang Lo, Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore Science Park II, 11 Science Park Road, 117685 Singapore e-mail: [email protected] Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore...

متن کامل

Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding.

A waveguide optical isolator realized by adhesive bonding of a garnet die, containing a Ce:YIG magneto-optic layer, on a silicon-on-insulator waveguide circuit is demonstrated. The die was bonded on top of an asymmetric Mach-Zehnder interferometer using a 100nm thick DVS-BCB adhesive bonding layer. A static magnetic field applied perpendicular to the light propagation direction results in a non...

متن کامل

Heterogeneously integrated III-V/silicon distributed feedback lasers.

Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C ar...

متن کامل

Silicon-integrated short-wavelength hybrid-cavity VCSEL.

We demonstrate a short-wavelength hybrid-cavity vertical-cavity surface-emitting laser (VCSEL) heterogeneously integrated on silicon. A GaAs-based "half-VCSEL" has been attached to a dielectric distributed Bragg reflector (DBR) on a silicon wafer using ultra-thin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding, thereby creating a cavity with the standing-wave optical field exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012